
EE / CprE / SE 492 – sdmay21-23

Grid AI

Week 3 Report
2/23/21 – 3/1/21
Client: Dr. Ravikumar Gelli
Advisor: Dr. Ravikumar Gelli

Team Members:
Justin Merkel –– ​ML Developer, Backend Developer

Patrick Wenzel –– ​Frontend Developer
Abhilash Tripathy –– ​Frontend Developer
Karthik Prakash –– ​Backend Developer
Abir Mojumder –– Frontend/Backend Developer

Weekly Summary

For the past week, the main objective for the frontend team was to be able to get ReactJS and the

material-ui-dashboard into one Docker container, the Flask portion into another Docker container, and

then be able to run a docker-compose.yml file to be able to run both at the same time. We were able to

successfully complete that and now our goal is to be able to add routes in the Flask container that the

frontend Docker container can successfully use. The frontend design is starting to populate with

information from the backend. We are currently able to visualize the 240 node system, and plan to

design layouts to display predictions/current value for a node.

For the backend team, one of the main objectives was to create models for all 240 nodes in the

system which we were successfully able to do. We also wanted to get a connection set up

between the frontend and our Neo4j database to display the static data that we are storing in the

nodes. As said before, we were able to do this and receive requests from the frontend and be able

to send all 240 nodes’ data to the frontend. Furthermore, data for the neo4j was formatted for

easier integration with ML models (through flask routing).

As a whole, the team is also working on our PIRM presentation as we have one on Thursday, March 4th.

Past Week Accomplishments
● Getting Docker containers for Flask and ReactJS/material-ui-dashboard working on the

frontend and being able to run our application with a docker-compose.yml file.

● Justin- Expanded the linear regression models so that there is one linear regression model

per transformer type. This means that there are models for all 240 nodes in the system for
power consumption. Additionally, I discovered how to easily save and load models into

python for the backend.

○ Single Phase

○ Three-Phase

○ Single Phase Center Tapped

● Successfully formatted all of the static node data into Neo4j

○ Node data for all transformers in the network are loaded

○ Each Node represents the Bus from a transformer and contains bus number,
voltage ratings, power rating, location of node, etc. Every Node is labeled as the

type of transformer as well (Single-Phase, Single-Phase Center Tapped, and
Three-Phase)

Abir - Node visualization in React

● Neo4j database uploaded with 240 nodes’ x and y coordinates for visualization of the
power grid in the webapp.

● Data flow: neo4j -> flask -> React

● The coordinates for the nodes show where they are placed relative(position) to each
other. (not distance however).

Populated bus data in tabular form:

Pending Issues
● Creating routes that work between the two Docker containers for the frontend that will route

between the different dashboard pages.

● Configure time-series data in database to allow backend querying

○ Potentially setup MySQL instance for this

● Create endpoints for pulling specific data from Neo4j

● ML model complete integration with backend.

● Get line information from neo4j to display connections between nodes.

● Design homepage, design how to display data for each node (userfriendly).

Individual Contributions

Plans for Coming Week
● Patrick - Be able to actually route the different pages in

Flask so that the dashboard routes that way instead of
through the NodeJS api it came with.

● Justin-Work on implementing a Logistic regression model
that will be able to detect anomaly chance.

Team Member Contribution Weekly
Hours

Total Hours

Patrick Wenzel Set up the frontend so that the Flask api

routing had its own Docker container and the
ReactJS client had its own Docker container.
Created a docker-compose.yml file that runs

both of those Docker containers at the same
time. Also set up a test route to verify that the
two Docker containers can communicate with

each other.

7 20

Justin Merkel Expanded the number of models to meet all
240 nodes in the system. Helped Backend

understand ML database requirements.

7 23

Abir Mojumder React frontend now uses d3 Component to
render the 240 nodes grid.

8 20

Karthik Prakash Formatted Neo4j data to easily integrate with
ML models

8 20

Abhilash Tripathy Making endpoints on the frontend that

connect with api on backend populating a
table on the frontend displaying the bus data
and their values

8 20

● Abir - Use line information from neo4j node relationships
to display Bus line connections on the frontend.

● Karthik - Import more data in a reasonable format to

Neo4j (node relationships and time-series), potentially
setup MySQL docker instance for time-series data, and

work on backend endpoints

● Abhilash - Consolidating multiple data insights from the
backend to a user-friendly format in the frontend.

