EE / CprE / SE 492 — sdmay21-23
Grid Al

Week 3 Report
2/23/21-3/1/21

Client: Dr. Ravikumar Gelli
Advisor: Dr. Ravikumar Gelli

Team Members:

Justin Merkel — ML Developer, Backend Developer
Patrick Wenzel — Frontend Developer

Abhilash Tripathy — Frontend Developer

Karthik Prakash — Backend Developer

Abir Mojumder — Frontend/Backend Developer

Weekly Summary

For the past week, the main objective for the frontend team was to be able to get React)S and the
material-ui-dashboard into one Docker container, the Flask portion into another Docker container, and
then be able to run a docker-compose.yml file to be able to run both at the same time. We were able to
successfully complete that and now our goal is to be able to add routes in the Flask container that the
frontend Docker container can successfully use. The frontend design is starting to populate with
information from the backend. We are currently able to visualize the 240 node system, and plan to
design layouts to display predictions/current value for a node.

For the backend team, one of the main objectives was to create models for all 240 nodes in the
system which we were successfully able to do. We also wanted to get a connection set up
between the frontend and our Neo4j database to display the static data that we are storing in the
nodes. As said before, we were able to do this and receive requests from the frontend and be able
to send all 240 nodes’ data to the frontend. Furthermore, data for the neo4j was formatted for
easier integration with ML models (through flask routing).

As a whole, the team is also working on our PIRM presentation as we have one on Thursday, March 4th.

Past Week Accomplishments

e Getting Docker containers for Flask and ReactJS/material-ui-dashboard working on the
frontend and being able to run our application with a docker-compose.yml file.

(base) £ $ sudo docker-compose up
[sudo] password for ubuntu:
Starting gridai-dashboard_api_1 ...
Starting gridai-dashboard_client_1 ...
Attaching to gridai-dashboard_api_1, gridai-dashboard_client_1
* Serving Flask app "app.py" (lazy loading)
Environment: development
Debug mode: on
Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
Restarting with stat
Debugger is active!
Debugger PIN: 308-220-137

| = material-dashboard-react@1.9.0 start
| = react-scripts start

: Project is running at http://172.31.0.3/
: webpack output is served from /material-dashboard-react
: Content not from webpack is served from /public
: 484s will fallback to /material-dashboard-react/
| Starting the development server...

| Compiled successfully!
| You can now view material-dashboard-react in the browser.

Local: http://localhost:3000/material-dashboard-react
Oon Your Network: http://172.31.0.3:3000/material-dashboard-react

| Mote that the development build is not optimized.
| To create a production build, use npm run build.

e Justin- Expanded the linear regression models so that there is one linear regression model
per transformer type. This means that there are models for all 240 nodes in the system for
power consumption. Additionally, | discovered how to easily save and load models into
python for the backend.

o Single Phase

70

60

50 4

40 4

30 4

204

Predictions [Future Value kwh]

10 1

T T
0 10 20 30 40 50 60 70
True Values [Future Value kWh]

o Three-Phase

o

70

60

40 A

20 4

Predictions [Future Value kwh]

10 A

0 10 20 30 40 50 60 70
True Values [Future Value kWh]

Single Phase Center Tapped

70

60

40

20 A

Predictions [Future Value kWh]

10 A

T
0 10 20 30 40 50 60 70
True Values [Future Value kWh]

e Successfully formatted all of the static node data into Neo4;j

o

o

Node data for all transformers in the network are loaded
Each Node represents the Bus from a transformer and contains bus number,
voltage ratings, power rating, location of node, etc. Every Node is labeled as the

type of transformer as well (Single-Phase, Single-Phase Center Tapped, and
Three-Phase)

BusiD: T 1006 Previous Bus: 1005 Primary voltage rating (kV): 13.8 Secondary voltage rating (kV):0.208 X:5.15 Y:14.11 KkVA rating (kVA)

SinglePhase) <id-:546 %R:1.0 %X:2.1

Abir - Node visualization in React

Neo4j database uploaded with 240 nodes’ x and y coordinates for visualization of the
power grid in the webapp.

MATCH (n:C n LIMIT 25
Coordinates(25)
bus1011

bus1013

A bus1015
6o
bus 1006
bus2001 o) 3
bus1017
bus2002 X
bus1001

Coordinates = <id>: 8777 BusMName: bus1017 x coord: 2.4 y coord: 3.73

@ [localhost:3000

bus3007
bus1009 busTooe bus1006 bustaas bustoos () buston
bus3006
bust
6 bus3004
bust 1 bus3ont
busto11 bus1oo? ol dcnas
busib12 L bus3002
bus1013 bus1014 () bus101s
bustoiE
busto7
bus2009
bus20081) bus2007
bus2011(0) bus2010)) bus2006 bus2005 bus2004 bus2003 bus2002
bus2012
bus3001') bus3090) bus308d.
bus20130) bus20T) bus2ol bus20ih bus2027 (0 bus2032 () bus203() bus203) bus20360) bus2037
0 bus2028
R bus2034 bus2038
bus2029
bus2016 bus2023 bus204 bus203(0) bus204) bus2041
bus2030
bus2017 bus2024 N bus20487) bus20470) bus2045 L
sz T bus2051) bus20507) bus2049T) bus2044 bus2043
bus2052

bus3053
bus3039
bus3054
bus30iz bus3021 bus3020 b
bus3nit bus3020 bus2028 bus303T
bus3010 bus3010 busi02? bus3036 bus30a5
bus3009 bus3018 bust0z6 bus3oss bus30sd
bus300B () bus301s busi022 bus3030 busind
bus3031
busa013 () busdote () busioz: D08
sz bus3042
busi014 bus301T bus3024
L bus3043
buiizs bus3034
bus30T4 bus3OTE) bus3gD bus30 bus307E bus3
bus3070
bus37
bus3071
bus3081 bus3080
bus3072
bus3088 " bus30BT) bus3086) bus30RS bus30B4) bus30E3 bus3082
bus31200 bus3t11 () bus3110 () bus31090) bus3108 () bus3t07
Bus3I7 () bus3t1s () bus3Ti3
bus31i4
bus311s

bus3eT) bus3t) bus3C) bus3c) bus3E) bus3061
bus3055
bus3’) bus3’) bus3) bus3e) busat bus3067
bus30a?
bus3Dde
bus3041 bus304) bus30E) bus30S bus30sz
bus3097
bus30(0) bus7Bus30%6
bus3106
bus3095
bus3105
bus3004
bus3104
bus30e3
bus3092 () bus31 () bus3 busiIus310]
bus3088
bus3122
bus3090
bus3121
bus3120
bus3ta bus311) bus31) bus3 1 busii
bus3122

The coordinates for the nodes show where they are placed relative(position) to each
other. (not distance however).

Populated bus data in tabular form:

c @

@ O localhost:

NAME VALUE
BUS 10
BUS 10
10 59910
BUS 10
BUS 10
a
10
BUS 10
BUS 5.836
BUS 6.409
BUS
BUS 10
BUS 10 5682
BUS 10 8957
6855

BUS 10
BUS 10 %4
BUS 10
a
BUS 10
BUS 2074
BUS 10 946
a 6916
BUS 10 6425
BUS 10 5704

9999599093999

DO0000005

6.457999909909999

bus3131

bus3130

bus3129

bus3128

bus3127

bus3126

Pending Issues
e Creating routes that work between the two Docker containers for the frontend that will route
between the different dashboard pages.

e Configure time-series data in database to allow backend querying
o Potentially setup MySQL instance for this

e Create endpoints for pulling specific data from Neo4j

e ML model complete integration with backend.

e Get line information from neo4j to display connections between nodes.

e Design homepage, design how to display data for each node (userfriendly).

Individual Contributions

Team Member Contribution Weekly Total Hours
Hours
Patrick Wenzel Set up the frontend so that the Flask api 7 20

routing had its own Docker container and the
ReactlS client had its own Docker container.
Created a docker-compose.yml file that runs
both of those Docker containers at the same
time. Also set up a test route to verify that the
two Docker containers can communicate with
each other.

Justin Merkel Expanded the number of models to meet all 7 23
240 nodes in the system. Helped Backend
understand ML database requirements.

Abir Mojumder React frontend now uses d3 Component to 8 20
render the 240 nodes grid.

Karthik Prakash Formatted Neo4j data to easily integrate with 8 20
ML models
Abhilash Tripathy Making endpoints on the frontend that 8 20

connect with api on backend populating a
table on the frontend displaying the bus data
and their values

Plans for Coming Week
e Patrick - Be able to actually route the different pages in
Flask so that the dashboard routes that way instead of
through the NodelS api it came with.
e Justin-Work on implementing a Logistic regression model
that will be able to detect anomaly chance.

® Abir - Use line information from neo4j node relationships
to display Bus line connections on the frontend.

e Karthik - Import more data in a reasonable format to
Neodj (node relationships and time-series), potentially
setup MySQL docker instance for time-series data, and
work on backend endpoints

e Abhilash - Consolidating multiple data insights from the
backend to a user-friendly format in the frontend.

